Продажи по всей России
Москва
+7 (495) 649-86-94
Санкт-Петербург
+7 (812) 385-55-94
Екатеринбург
+7 (343) 237-27-40
Ростов-на-Дону
+7 (863) 303-20-34
Нижний Новгород
+7 (831) 280-98-16
Смотреть все контакты
Москва +7(495)649-86-94 | Все города
Москва+7(495)649-86-94
Санкт-Петербург+7(812)385-55-94
Екатеринбург+7(343)237-27-40
Ростов-на-Дону+7(863)303-20-34
Нижний Новгород+7(831)280-98-16
Смотреть все контакты

Люминесцентные лампы

Применение трубчатых люминесцентных ламп позволяет изменить визуальную геометрию и дизайн освещаемых помещений.

Люминесцентные лампы являются вторым по распространенности источником света, а в некоторых странах (например, в Японии) они лидируют, оставив позади лампы накаливания. Каждый год в мире выпускается больше миллиарда этих ламп.

Первые люминесцентные лампы в том виде, в котором они дошли до наших дней, были созданы американской компанией General Electric в 1938 году. За прошедшие годы люминесцентные лампы проникли во многие сферы деятельности людей и сейчас используются практически в каждом магазине или офисе.

Принцип образования электромагнитного излучения в люминесцентных лампах

Люминесцентный источник — это газоразрядная лампа низкого давления, в которой электрический разряд образуется в смеси ртутных паров и инертного газа (обычно аргона). Колба лампы всегда выполняется в виде стеклянного цилиндра 12, 16, 26 или 38 миллиметров в диаметре. Цилиндр может выполняться изогнутым в форме окружности, буквы U или другой сложной фигуры. По обеим сторонам цилиндра к нему герметично припаяны ножки из стекла, с внутренней стороны которых расположены электроды.

По своей конструкции электроды напоминают биспиральное тело ламп накаливания и тоже изготавливаются в виде вольфрамовой нити. В некоторых лампах электроды выполнены в форме триспирали, в которых из биспирали образована новая спираль. С внешней стороны электроды припаяны к цоколю. В прямых и U-образных люминесцентных лампах применяется две разновидности цоколей — G5 и G13 (цифры обозначают расстояние между ножками в миллиметрах).

Подобно лампам накаливания, воздух из колб люминесцентных ламп полностью откачивается штенгелем, впаянным в ножку. После откачивания воздуха в колбу нагнетается инертный газ и вводится небольшая капля ртути (около 30 мг) или сплав ртути с другими металлами (висмут, индий и т.д.). На устанавливаемые в лампах электроды наносится слой из смеси оксидов стронция, кальция, бария, тория для повышения их активности.

Освещение магазинов на объектах

Перейти в галерею

Мы поможем подобрать светильники на ваш объект

Мы свяжемся с вами в ближайшее время
Ответственный менеджер по запросу:
Евгений Чилимов +7(495)649-86-94 доб.106 ce@svetpro.ru
Мы свяжемся с вами в ближайшее время
Ответственный менеджер:
Евгений Чилимов +7(495)649-86-94 доб.106 ce@svetpro.ru
м 2
м
Ответственный менеджер по запросу:
Евгений Чилимов
+7(495)649-86-94 доб.106
ce@svetpro.ru

Если на лампу подано напряжение, превышающее напряжение зажигания, то между электродами происходит разряд, ток которого должен ограничиваться дополнительными внешними компонентами. Колба лампы заполнена инертным газом, но в ней постоянно находятся ртутные пары, объем которых зависит от температуры самого холодного участка колбы. Частицы ртути ионизируются при разряде быстрее частиц инертного газа, поэтому свечение лампы и проходящий через нее ток определяются именно ртутью.

Меры, обеспечивающие увеличение доли видимого излучения

В ртутных лампах низкого давления доля излучения составляет не более двух процентов от мощности самого разряда, а светоотдача разряда — лишь 5–7 лм/Вт. Однако больше половины мощности разряда преобразуется в ультрафиолет с волнами длиной 254 и 185 нм. Из курса физики известно, что при сокращении длины волны излучения увеличивается энергия этого излучения. С помощью люминофоров можно преобразовать одно излучение в другое, причем в соответствии с законом сохранения энергии преобразованное излучение будет менее энергичным, чем первоначальное. Этим путем ультрафиолет можно преобразовать в видимое излучения, применяя люминофоры, а обратное преобразование невозможно.

Изнутри цилиндрическая колба покрыта слоем специального вещества – люминофора, который преобразует ультрафиолетовые лучи ртутных паров в видимый свет. Чаще всего в люминесцентных лампах в качестве люминофора применяется галофосфат кальция с добавлением марганца и сурьмы. При попадании на такой люминофор ультрафиолетовых лучей он начинает светиться сплошным белым светом различных тонов. Излучение люминофора имеет сплошной спектр с двумя максимумами — 480 и 580 нм. Первый максимум зависит от доли сурьмы в люминофоре, а второй — марганца. Изменение содержания этих веществ позволяет получать белый свет различных тональностей цвета — от теплых оттенков до оттенков дневного света.

Корректировка цветопередачи

В 70-е годы прошлого века начался выпуск ламп с тремя люминофорами, обладающими максимумами спектра излучения в синей, зеленой и красной областях (450, 540 и 610 нм, соответственно). Эти люминофоры изначально создавались для кинескопов цветных телевизоров, и с их помощью формировалась качественная передача цветов. Совместное применение трех люминофоров дало возможность и в лампах добиться улучшения цветопередачи и светоотдачи по сравнению с применением одного люминофора. Однако такие люминофоры имеют довольно высокую стоимость по сравнению с традиционными, что обусловлено применением в них редких химических элементов — европия, тербия и церия. Поэтому до сих пор чаще всего в люминесцентных лампах используются традиционные люминофоры на основе галофосфата кальция.

В люминесцентных лампах электроды являются как источниками, так и приемниками электронов и ионов, которые обеспечивают протекание электрического тока через разрядный промежуток. Для попадания электронов в разрядный промежуток они должны нагреваться до 1100–1200 градусов. При таких высоких температурах вольфрам излучает слабое свечение вишневого оттенка, а его испарение очень незначительно. Для повышения числа электронов электроды покрываются слоем активирующего состава, имеющим значительно меньшую термостойкость, чем вольфрам, и в процессе работы слой распыляется и оседает на внутренних стенках колбы. Главным образом именно этот процесс распыления активирующего слоя определяет продолжительность службы ламп.

Потребность в разноразмерных колбах

Для повышения эффективности разряда, то есть для максимального излучения ртутного ультрафиолета, нужно поддерживать необходимую температуру самой колбы, для чего в каждом конкретном случае подбирается диаметр колбы. Все лампы имеют приблизительно равную плотность тока, исчисляющуюся отношением величины тока к площади сечения колбы, поэтому лампы разной мощности в одинаковых колбах обычно работают при одинаковых номинальных токах. Снижение напряжения на лампе пропорционально ее длине, а так как мощность является произведением величины тока на напряжение, то при равном диаметре колб мощность ламп пропорциональна их длине. У ламп мощностью 36–40 Вт длина колбы равна 1210 мм, а у ламп мощностью 18–20 Вт — 604 мм.

Укорачивание ламп и последующее достижение необходимых мощностей за счет повышения разрядного тока не оправдывает себя, так как при этом повышается температура колбы, что ведет к повышению давления ртутных паров и снижению светоотдачи ламп. Производители ламп уменьшают их общую длину с помощью изменения формы ламп, изготавливая U-образные или кольцевые лампы. Уже в 50-е годы ХХ века в СССР изготавливались U-образные лампы мощностью 30 Вт с диаметром колбы 26 мм и мощностью 8 Вт с диаметром колбы 14 мм.

Полностью устранить проблему снижения размеров ламп получилось лишь в 80-е годы с началом применения люминофоров, которые допускают использование высоких электрических нагрузок. Колбы люминесцентных ламп стали изготавливать из трубок с диаметром 12 мм и изгибать их, уменьшая этим общую длину ламп. Началось производство компактных люминесцентных ламп, по конструкции и принципу работы не отличающихся от линейных ламп.

Люминесцентные лампы прочно вошли в нашу жизнь как один из экономичных источников света. Благодаря не ослабевающему вниманию к ним со стороны изобретателей, они продолжают быть интересны и производителям светотехнической продукции.

Мы поможем подобрать светильники на ваш объект

Мы свяжемся с вами в ближайшее время
Ответственный менеджер по запросу:
Евгений Чилимов +7(495)649-86-94 доб.106 ce@svetpro.ru
Мы свяжемся с вами в ближайшее время
Ответственный менеджер:
Евгений Чилимов +7(495)649-86-94 доб.106 ce@svetpro.ru
м 2
м
Ответственный менеджер по запросу:
Евгений Чилимов
+7(495)649-86-94 доб.106
ce@svetpro.ru

отправить заявку

Продукция по типу и установке
+7 (495) 649-86-94 svet@svetpro.ru
Оплачен счет:

Волгоградская обл., гор. Котельниково; "Освещения предзаводской территории завода миниральных удобрений ЕвроХим-ВолгаКалий"; опоры Valmont Galaxie P6.